聽日要考啦,有幾條exercise唔多識做!
1)
Show that sinx+sin2x+sin3x+...+sinnx={sin(1/2 nx)sin[1/2 (n+1)x]}/sin(1/2 x) for all positive integers n
2)
Express cos^n x in terms of multiple angles, for positive integer n.
3)
Express sin(nx) in terms of sinx and cosx, for positive integer n.
For the sake of convenience,we set C =cosθ S=sinθ
by the moivre's theorem,
(C+iS)^n=cosnθ+isinnθ
The binomial expansion of the left hand side is
(C+iS)^n
=C^n+ nC1 (C^n-1)(iS)+(nC2)(C^n-2)(iS)^2+(nC3)(C^n-3)(iS)^3....+....
+(nCn-1)C x (iS)^n-1 +(iS)^n
={C^n - (nC2)C^(n-2)S^2+(nC4)C^(n-4)S^4 - .......}
+i{(nC1)C^(n-1)S-(nC3)C^(n-3)S^3+(nC5)C^(n-5)S^5 -........}
equating real and imaginary parts of both sides ,we get
sinnθ=(nC1)C^(n-1)S-(nC3)C^(n-3)S^3+(nC5)C^(n-5)S^5 -........ (可能錯)