1.Given that a,b,c belong to R+,show that
(1) c/(a+b)+b/(a+c)+a/(b+c)>=3/2;
(2) sqrt[a/(b+c)]+sqrt[b/(a+c)]+sqrt[c/(a+b)]>=2.
2.Let x,y,z belong to R+,find the min. value of (x+y)(y+z) if xyz(x+y+z)=1.
3.Let α,β belong to (0,π/2),prove that 1/cos2α+1/(sin2α cos2β sin2β)>=9.
4.Let α=/=nπ/2 (n belongs to Z), prove that (1+1/sin2nα)(1+1/cos2nα)>=(1+2n)2. |