|
見到兩條數都幾有趣,睇下大家做唔做到
1)
For any positive integer n,let
Un=1/2√3[(1+√3)n-(1-√3)n]
Vn=(1+√3)n+(1-√3)n
Prove by mathematical induction that Un,Vn are integers and Vn is even.Hence, or otherwise, prove that U2n is even.
2)(a)
Let f(x) be a convex function defined on [a,b], i.e.
f(x1)+f(x2)≤2f[(x1+x2)/2]
for any x1,x2∊[a,b].For each positive integer n, consider the statement
I(n): If xi∊[a,b],i=1,2,...,n, then
f(x1)+f(x2)+...+f(xn)≤nf[(x1+x2+...+xn)/n]
(i) Prove by induction that I(2k) is true for every positive integer k.
(ii) Prove that if I(n) (n≥2) is true, then I(n-1) is true.
(iii) Prove that I(n) is true for every positive n.
(b)
Prove that f(x)=sinx is convex on [0,π], and hence that
1/n(sinθ1+sinθ2+...+sinθn)≤sin[(θ1+θ2+...+θn)/n] for 0≤θi≤π
另外我自己出左題(其實都唔算自己出)
Prove that √2 is irrational. |
評分
-
查看全部評分
|