(a+b)/(a-b)={[tan(α/2)+tan(β/2)][1+tan(α/2)tan(β/2)]}/{[tan(α/2)-tan(β/2)][1-tan(α/2)tan(β/2)]}
-5[tan(α/2)-tan(β/2)][1-tan(α/2)tan(β/2)]=[tan(α/2)+tan(β/2)][1+tan(α/2)tan(β/2)]
-5[tan(α/2)-tan²(α/2)tan(β/2)-tan(β/2)+tan²(β/2)tan(α/2)]=tan(α/2)+tan²(α/2)tan(β/2)+tan(β/2)+tan²(β/2)tan(α/2)
Let x,c be tan(β/2),tan(α/2) respectively, (where c is a constant)
-5c+5c²x+5x-5cx²=c+c²x+x+cx²
6cx²-(4+4c²)x+6c=0
x={(4+4c²)±√[(4+4c²)²-4(6c)²]}/2
β=2tan-1x
Law of tangents is an extra formula for calculating angles or edges,is useless,meaningless.
In fact,law of sines can have more than one anwers because of SINE.
For example
sin60°=sin120°
can we say 60°=sin-1sin120° ?
The answer is,yes!
Since sinθ=sin(180°-θ) or sinθ=sin(π-θ)